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NOTE

A Spline Collocation Scheme for the Spherical
Shallow Water Equations

Key Words:numerical weather prediction; spherical PDEs; pole problem; reduced
grid; method of lines.

1. INTRODUCTION

The shallow water equations describe large scale horizontal phenomena of the global
atmospheric motion to good approximation. Thus they provide a widely accepted primary
test for numerical methods for global atmospheric modelling before proceeding to complete
3D baroclinic models [7]. They are prognostic equations for the (horizontal) velocity field
and the depth of a shallow homogeneous, incompressible, hydrostatic, and inviscid fluid
layer on a rotating sphere.

Currently there is a controversy on the question which of the different approaches to the
integration of global models is preferable. For example, the European Centre for Medium
Range Weather Forecasts (ECMWF) and the National Center for Atmospheric Research
(NCAR) run spectral transform methods, which use spherical harmonics for the spatial
discretization, whereas currently at German Weather Service (DWD) a finite difference
scheme on a uniform triangular grid is developed. Although spectral methods are superior
at today’s resolutions, it seems that grid point schemes will be competitive in the future,
since they allow for adaptivity and they appear more appropriate for massively parallel
computer systems. In this research note we present a spline collocation scheme for the
shallow water equations, a preliminary version of which already has been studied in detail
for the scalar advection equation in [1, 2].

Let Ä :={(x, y, z)∈R3, x2+ y2+ z2= 1} for the two-dimensional unit sphere. From
a theoretical point of view it is convenient to formulate spherical differential equations
coordinate-free. But for the parametrization of partial differential operators and vector
fields on the sphere we need local coordinates. We will use standard polar coordinates
(λ, ϑ)∈ [0, 2π ]× [−π/2, π/2] on the strip{(x, y, z)∈Ä, |z| ≤1/

√
2} around the equator

and two stereographic coordinate systems(ξ, η)∈R3 on the polar caps{(x, y, z)∈Ä, z≥
1/
√

2} and {(x, y, z)∈Ä, z≤−1/
√

2}. Of course, this particular partition is somewhat
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FIG. 1. The polar region of the reduced gridT4.

arbitrary, but it is irrelevant to the following. We will writev := (u, v,0) for horizontal
velocity fields, whereu andv are the velocity components inλ- andϑ-directions (or inξ -
andη-directions), respectively.

Now we briefly sketch a construction [1, 2] of spherical splines on a reduced grid.
Therefore, let1ϑ( j ) :=π/2 j+1 and1λ( j )

k := 2r ( j )
k (π/2 j+1) for k= 0(1)2 j+1, where

r ( j )
k :=


j + 2 for k = 0 ork = 2 j+1,

b j + 1− ln2(πk)c for 0< k < 2 j−1,

0 for 2j−1 ≤ k ≤ 3× 2 j−1,

b j + 1− ln2(π(2 j+1− k))c for 3× 2 j−1 < k < 2 j+1,

(1)

and let K j :={(i, k), k= 0(1)2 j+1, i = 0(2r ( j )
k )2 j+2− 2r ( j )

k }. With grid points ω( j )
(i,k) :=

(λ
( j )
i , ϑ

( j )
k ) := (i1λ( j )

k ,−π/2+k1ϑ( j )), reduced grids are defined byT j :={ω( j )
(i,k), (i, k)∈

K j } (see Fig. 1). They are constructed from the equiangular standard grids (corres-
ponding tor ( j )

k ≡ 0) by dropping grid points close to the poles. By this procedure the
pole problem is eliminated. Let1xmin

j and1xmax
j be the minimal and maximal dis-

tances between neighbours inT j , respectively. Then forr ( j )
k as defined in (1) there holds

1xmax
j '1xmin

j ' 2− j ; see also Table I. Piecewise bilinear splines adopted toT j are

TABLE I

Characteristics of the Reduced Grids and Diffusion Constants

Level of Corresp. spectral Diffusion
resolution j truncation TN 1xmax

j 1xmin
j dim Vj = |T j | constantκ

3 T10 1251 km 694 km 482 1.0 · 10−5

4 T21 626 km 347 km 1986 3.0 · 10−7

5 T42 313 km 161 km 8066 3.0 · 10−8

6 T85 156 km 77 km 25714 2.0 · 10−9
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defined by

ϕ
( j )
(i,k)(λ, ϑ) :=


max

{
0, 1− Zϑ( j )

k −ϑ Z
1ϑ( j )

}
for k = 0, 2 j + 1,

max
{

0, 1− Zλ( j )
i −λZ
1λ

( j )
k

}
·max

{
0, 1− Zϑ( j )

k −ϑ Z
1ϑ( j )

}
for k = 1(1)2 j + 1− 1,

(2)

andVj := span{ϕ( j )
(i,k), (i, k)∈ K j }. Finally letϕ̃( j )

(i,k) := δ(·−ω( j )
(i,k)) the Dirac functional cen-

tered atω( j )
(i,k) ∈Ä. Obviously there holds are biorthogonality relation,(

ϕ̃
( j )
(i ′,k′), ϕ

( j )
(i,k)

) = δ(i ′,k′),(i,k). (3)

2. DISCRETIZATION OF THE SHALLOW WATER EQUATIONS

For the derivation of the shallow water equations we refer to the literature [3]. In nondi-
mensional variables and in coordinate-free form, the equations of motion and continuity
are written as

∂v
∂t
+ v · ∇v = f v× k −∇h,

∂h

∂t
+ v · ∇(h− hs) = −(h− hs)∇ · v. (4)

Hereh is the depth of the fluid,hs is the height of the underlying topography,v is the
horizontal velocity field,f is the Coriolis parameter, andk is the outer unit normal vector.
We applied the scalingh 7→ ((2φa)2/g)h, v 7→ 2φav, andt 7→ t/2φ with g the constant of
gravity,a the earth’s radius, andφ its angular velocity. For the discretization we rewrite the
equations in local coordinates. For example, in polar coordinates the equation of continuity
reads

∂h

∂t
+ u

cosϑ

∂(h− hs)

∂λ
+ v ∂(h− hs)

∂ϑ
= − (h− hs)

cosϑ

(
∂u

∂λ
+ ∂ cosϑv

∂ϑ

)
. (5)

Now assume we are given initial valuesh(0)= h0 andv(0)= v0. For the evolution in time
we discretize the system separately in space and in time, following the method of lines.
Substituting the approximations

h(t) ≈
∑

(i,k)∈K j

h( j,(i,k))(t)ϕ
( j )
(i,k), v(t) ≈

∑
(i,k)∈K j

(
u( j,(i,k))(t), v( j,(i,k))(t), 0

)
ϕ
( j )
(i,k) (6)

in the continuous equations (4) and applying the biorthogonal Dirac functionals to any
component yields a system of ordinary differential equations for the unknown continuous
time coefficients. Now we exploit the biorthogonality relation (3) and the fact that

(
ϕ̃
( j )
(i,k), f g

) = (ϕ̃( j )
(i,k), f

)(
ϕ̃
( j )
(i,k), g

)
(7)

for any functionsf, g :Ä→R. For the full discretization we fix time steps1t (n)j and ap-

proximate the partial time derivatives at timet (n)j := ∑n−1
n′=01t (n

′) by generalized centered
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differences, involving the unknown variables at timest (n+1)
j andt (n−1)

j and evaluating the
right-hand sides at timet (n)j . This yields approximations

h
(
t (n)j

) ≈ h(n)j :=
∑

(i,k)∈K j

h(n)( j,(i,k))ϕ
( j )
(i,k),

v
(
t (n)j

) ≈ v(n)j :=
∑

(i,k)∈K j

(
u(n)( j,(i,k)), v

(n)
( j,(i,k)), 0

)
ϕ
( j )
(i,k).

(8)

For example, from Eq. (5) the discrete time coefficients in the polar coordinate representa-
tion are calculated by

h(n+1)
( j,(i ′,k′)) = h(n−1)

( j,(i ′,k′))−
(
1t (n)j +1t (n−1)

j

)
×
[

u(n)( j,(i ′,k′))

cosϑ( j )
k′

∑
(i,k)∈K j

0
(1)
j,(i ′,k′),(i,k)

(
h(n)( j,(i,k))− hs,( j,(i,k))

)
+ (h(n)( j,(i ′,k′)) − hs,( j,(i ′,k′))

) ∑
(i,k)∈K j

0
(1)
j,(i ′,k′),(i,k)

u(n)( j,(i,k))

cosϑ( j )
k′

+ v(n)( j,(i ′,k′))

∑
(i,k)∈K j

0
(2)
j,(i ′,k′),(i,k)

(
h(n)( j,(i,k)) − hs,( j,(i,k))

)
+ (h(n)( j,(i ′,k′)) − hs,( j,(i ′,k′))

) ∑
(i,k)∈K j

0
(2)
j,(i ′,k′),(i,k)v

(n)
( j,(i,k))

− tanϑ( j )
k′
(
h(n)( j,(i ′,k′)) − hs,( j,(i ′,k′))

)
v
(n)
( j,(i ′,k′))

]
(9)

with the interaction coefficients

0
(1)
j,(i ′,k′),(i,k) :=

(
ϕ̃
( j )
(i ′,k′),

∂ϕ
( j )
(i,k)

∂λ

)
, 0

(2)
j,(i ′,k′),(i,k) :=

(
ϕ̃
( j )
(i ′,k′),

∂ϕ
( j )
(i,k)

∂ϑ

)
. (10)

Similar equations are derived from the equation of motion foru(n+1)
( j,(i ′,k′)) andv(n+1)

( j,(i ′,k′)) and
for the stereographic coordinate representation, now involving the interaction coefficients

0
(1)
j,(i ′,k′),(i,k) :=

(
ϕ̃
( j )
(i ′,k′),

∂ϕ
( j )
(i,k)

∂ξ

)
, 0

(2)
j,(i ′,k′),(i,k) :=

(
ϕ̃
( j )
(i ′,k′),

∂ϕ
( j )
(i,k)

∂η

)
. (11)

These coefficients are independent of time. Hence, they can be precalculated and stored,
and the time-marching procedure reduces to simple matrix–vector multiplications. Since
the trial functionsϕ( j )

(i,k) are not continuously differentiable, the partial derivatives in (10)
and (11) cannot be taken in a classical sense. Essentially we replace them by centered
differentials; thus we can consider the present method as a generalization of the classical
leap-frog scheme. But to guarantee linear stability, we have to make modifications at those
grid pointsω( j )

(i ′,k′), where a change in the meridional stretching factorr ( j )
k occurs. A detailed

description is given in [1, 2].
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2.1. Remark. Due to the biorthogonality of the trial functions and the test functionals
no linear systems have to be inverted, and by (7) the quadratic nonlinearities in the contin-
uous equations are discretized by simple sums. In total, to perform one time step we only
have to index, read, and multiply approximately 300Nj interaction coefficients, where
Nj := |T j | =dim Vj .

To satisfy the linear stability criterion, the time steps are chosen according to the Courant–
Friedrich–Lewy condition

1t (n)j := 1xmin
j

2
(∣∣v(n)j

∣∣+ ∣∣h(n)j

∣∣1/2)
`∞(T j )

. (12)

In order to damp noise and to deal with the spectral blocking near the truncation limit,
an explicit diffusion term is included. After every time step we correct any approximated
variablez by z− κ(2− sinϑ)12z, where1 is the Laplacian, discretized by the standard
five-point stencil and adapted to the reduced grid, andκ >0 is a constant (see Table I).
The weight 2− cosϑ is introduced to compensate the irregular grid structure close to the
poles.

3. NUMERICAL RESULTS

We applied the scheme to the complete standard test set for the spherical shallow water
equations [7]. Here we only present and analyze some selected typical results; for more
details we refer to [2]. As confirmed by the test cases 1 to 3, the poles are not exceptional
points in our approach. For the scalar advection equation (test case 1) we could prove
first-order consistency in space, second-order consistency in time, and conditional linear
stability; hence, the method is convergent under the CFL condition. As expected, we observe
numerical dispersion which is typical for centered difference approximations [3]. Numerical
experiments confirmed these properties also for the nonlinear shallow water system.

3.1. EXAMPLE (Test case 5: zonal flow over an isolated mountain). This test consists of
a zonal flow impinging on an isolated mountain which is centered at(λc, ϑc)= (3π/2, π/6)
(for more details we refer to [7]). It describes the rapid evolution from a meridionally smooth
symmetric flow to an irregular high wave number state. This test is designed to study the
influence of nonflat topography and the conservation of integral invariants.

We observe convergence of the approximations (see Table II), where the error is calculated
with respect to a reference solution in T213 resolution as described in [7]. Mass and energy
are almost perfectly conserved. For comparison we show the errors for the spectral method
[4, 5] with T42 and T63 resolution, which are of the same order. There is no marked
influence of the irregular grid structure on the approximations (see Fig. 2) and in contrast
to the spectral method there are no problems in the vicinity of the mountain; in particular
we do not observe any “spectral ringing.”

3.2. EXAMPLE (Test case 7: analyzed 500 mb height and wind field). This test consists
of the atmospheric initial conditions of the 500 mb height and winds for January 16, 1979,
initialized by nonlinear normal mode initialization [3, 4]. It is characterized initially by two
cutoff lows, and the flow develops into a typical blocking situation. The mean height of the
height field is set to 10 km, and we assume flat topography (hs= 0).
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TABLE II

Errors after 10 Days for Test Case 5 for Different Resolutionsj

Level Time step Relative Relative Normalized Normalized
j 1t j L∞-error L2-error mass energy

3 1500 s 4.97% 1.25% 0.998 0.989
4 750 s 4.07% 0.63% 1.000 0.997
5 360 s 1.22% 0.23% 1.000 0.999
6 180 s 0.30% 0.06% 1.000 1.000

T42 1200 s 1.40% 0.12% 1.000 1.000
T63 900 s 0.65% 0.12% 1.000 1.000

Note.The results for the spectral method with T42 and T63 truncation are estimated from [4, 5].

Table III shows qualitatively the same results as for test case 5. After five days of simula-
tion the global structure of the height fields is well reproduced. But some small-scale details
are slightly blurred, in particular in the northern hemisphere (see Fig. 3). We mention that
plotting traces of the height field indicates some very weak presence of temporal noise or
residual gravity waves, but this does not disturb the overall structure.

FIG. 2. The calculated height field and the difference with the reference solution at day 10 for test case 5 and
j = 6.
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TABLE III

As Table II after 5 Days for Test Case 7 (January 16, 1979)

Level Time step Relative Relative Normalized Normalized
j 1t j L∞-error L2-error mass energy

3 1200 s 7.72% 1.68% 1.003 0.983
4 540 s 4.90% 0.78% 1.000 0.988
5 270 s 3.94% 0.58% 1.000 0.992
6 120 s 2.20% 0.38% 1.000 0.997

T42 1200 s 4.25% 0.53% 1.000 0.998
T63 900 s 2.00% 0.23% 1.000 0.999

FIG. 3. Stereographic projections of the calculated height field, the reference solution, and the difference after
5 days for test case 7 (January 16, 1979) andj = 6.
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4. CONCLUSIONS

A spline collocation scheme on a reduced spherical grid is formulated and applied to a
standard benchmark test set. No special treatment at the poles is required. Although the
spatial discretization is only of first order, numerical experiments show that at comparable
resolutions it is as accurate as an established spectral method. Furthermore, nonflat topo-
graphy does not cause any problems, and there are no spurious oscillations caused by Gibbs’
phenomena.

By Remark 2.1, every time step in the time-marching procedure can be performed very
efficiently. The price we have to pay is the very restrictive condition (12) on the time steps,
since it is controlled by fast gravity waves, which represent noise within the shallow water
model. This limits the overall efficiency of the method. In fact, there are semi-implicit semi-
Lagrangian schemes which allow for time steps up to 2 h atresolutions even higher than
j = 6. However, it is the best we can expect for a fully explicit method unless the gravity
and Coriolis terms are treated implicitly. Since in this note we mainly focus on the spatial
discretization, here we do not address the question of improved time integration schemes.
Finally we mention that in principle it is possible to construct smoother trial functions on
the reduced grids. This allows for higher order spatial discretizations.

Very currently the scheme has been reformulated as a biorthogonal wavelet scheme. The
spatial domain can be resolved adaptively according to the structure of the solution or the to-
pography. For the scalar advection equation this is discussed in detail in [1, 2]. First results on
the shallow water equations can be found in [2] and will be published in a forthcoming paper.
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